Prediction and Dissection of Widely-Varying Association Rate Constants of Actin-Binding Proteins
نویسندگان
چکیده
Actin is an abundant protein that constitutes a main component of the eukaryotic cytoskeleton. Its polymerization and depolymerization are regulated by a variety of actin-binding proteins. Their functions range from nucleation of actin polymerization to sequestering G-actin in 1∶1 complexes. The kinetics of forming these complexes, with rate constants varying at least three orders of magnitude, is critical to the distinct regulatory functions. Previously we have developed a transient-complex theory for computing protein association mechanisms and association rate constants. The transient complex refers to an intermediate in which the two associating proteins have near-native separation and relative orientation but have yet to form short-range specific interactions of the native complex. The association rate constant is predicted as k(a) = k(a0) e(-ΔG(el*)/k(B)T), where k(a0) is the basal rate constant for reaching the transient complex by free diffusion, and the Boltzmann factor captures the bias of long-range electrostatic interactions. Here we applied the transient-complex theory to study the association kinetics of seven actin-binding proteins with G-actin. These proteins exhibit three classes of association mechanisms, due to their different molecular shapes and flexibility. The 1000-fold k(a) variations among them can mostly be attributed to disparate electrostatic contributions. The basal rate constants also showed variations, resulting from the different shapes and sizes of the interfaces formed by the seven actin-binding proteins with G-actin. This study demonstrates the various ways that actin-binding proteins use physical properties to tune their association mechanisms and rate constants to suit distinct regulatory functions.
منابع مشابه
Transient kinetic analysis of rhodamine phalloidin binding to actin filaments.
We have characterized the binding of rhodamine phalloidin to actin filaments and actin filaments saturated with either myosin subfragment-1 or tropomyosin in 50 mM KCl, 1 mM MgCl2 buffer at pH 7.0. Direct transient kinetic measurements of rhodamine phalloidin binding to actin filaments indicate an association rate constant of 2.8 x 10(4) M-1 s-1 and a dissociation rate constant of 4.8 x 10(-4) ...
متن کاملIn silico investigation of lactoferrin protein characterizations for the prediction of anti-microbial properties
Lactoferrin (Lf) is an iron-binding multi-functional glycoprotein which has numerous physiological functions such as iron transportation, anti-microbial activity and immune response. In this study, different in silico approaches were exploited to investigate Lf protein properties in a number of mammalian species. Results showed that the iron-binding site, DNA and RNA-binding sites, signal pepti...
متن کاملMolecular Docking of Curcumin With Breast Cancer Cell Line Proteins
Background: Breast cancer is known as the most widely recognized dangerous tumors; therefore, the most common reason for mortality among all instances of harmful neoplastic illness in females. This is because the lack of specific signs and symptoms at the early stage and at the aggressive nature. Currently, breast cancer treatment such as chemotherapy, surgery and radiotherapy has not been effe...
متن کاملKinetic Rate Constant Prediction Supports the Conformational Selection Mechanism of Protein Binding
The prediction of protein-protein kinetic rate constants provides a fundamental test of our understanding of molecular recognition, and will play an important role in the modeling of complex biological systems. In this paper, a feature selection and regression algorithm is applied to mine a large set of molecular descriptors and construct simple models for association and dissociation rate cons...
متن کاملSingle molecule kinetic analysis of actin filament capping. Polyphosphoinositides do not dissociate capping proteins.
We investigated how heterodimeric capping proteins bind to and dissociate from the barbed ends of actin filaments by observing single muscle actin filaments by total internal reflection fluorescence microscopy. The barbed end rate constants for mouse capping protein (CP) association of 2.6 x 10(6) M(-1) s(-1) and dissociation of 0.0003 s(-1) agree with published values measured in bulk assays. ...
متن کامل